Diversity and evolution of sound production in the social behavior of Chaetodon butterflyfishes.
نویسندگان
چکیده
Fish produce context-specific sounds during social communication, but it is not known how acoustic behaviors have evolved in relation to specializations of the auditory system. Butterflyfishes (family Chaetodontidae) have a well-defined phylogeny and produce pulsed communication sounds during social interactions on coral reefs. Recent work indicates that two sound production mechanisms exist in the bannerfish clade and that other mechanisms are used in the Chaetodon clade, which is distinguished by an auditory specialization, the laterophysic connection (LC). Here, we determine the kinematic action patterns associated with sound production during social interactions in four Chaetodon subgenera and the non-laterophysic fish Forcipiger flavissimus. Some Chaetodon species share the head bob acoustic behavior with F. flavissimus, which along with other sounds in the 100-1000 Hz spectrum, are probably adequate to stimulate the ear, swim bladder or LC of a receiver fish. In contrast, only Chaetodon species produced the tail slap sound, which involves a 1-30 Hz hydrodynamic pulse that is likely to stimulate the receiver's ear and lateral line at close distances, but not the swim bladder or LC. Reconstructions of ancestral character states appear equivocal for the head bob and divergent for the tail slap acoustic behaviors. Independent contrast analysis shows a correlation between sound duration and stimulus intensity characters. The intensities of the tail slap and body pulse sounds in Chaeotodon species are correlated with body size and can provide honest communication signals. Future studies on fish acoustic communication should investigate low-frequency and infrasound acoustic fields to understand the integrated function of the ear and lateral line, and their evolutionary patterns.
منابع مشابه
Acoustic communication in territorial butterflyfish: test of the sound production hypothesis.
Butterflyfishes are conspicuous members of coral reefs and well known for their visual displays during social interactions. Members of the genus Chaetodon have a unique peripheral arrangement of the anterior swim bladder that connects with the lateral line (the laterophysic connection) and in many species projects towards the inner ear. This morphology has lead to the proposal that the lateroph...
متن کاملSound pressure enhances the hearing sensitivity of Chaetodon butterflyfishes on noisy coral reefs.
Butterflyfishes are conspicuous members of coral reefs that communicate with acoustic signals during social interactions with mates and other conspecifics. Members of the genus Chaetodon have a laterophysic connection (LC) - a unique association of anterior swim bladder horns and the cranial lateral line - but the action of the LC system on auditory sensitivity is unexplored. Here, we show in b...
متن کاملDecoupled diversification dynamics of feeding morphology following a major functional innovation in marine butterflyfishes.
The diversity of fishes on coral reefs is influenced by the evolution of feeding innovations. For instance, the evolution of an intramandibular jaw joint has aided shifts to corallivory in Chaetodon butterflyfishes following their Miocene colonization of coral reefs. Today, over half of all Chaetodon species consume coral, easily the largest concentration of corallivores in any reef fish family...
متن کاملAbundance, diversity, and feeding behavior of coral reef butterflyfishes at Lord Howe Island
Endemic species are assumed to have a high risk of extinction because their restricted geographic range is often associated with low abundance and high ecological specialization. This study examines the abundance of Chaetodon butterflyfishes at Lord Howe Island in the south-west Pacific, and compares interspecific differences in local abundance to the feeding behavior and geographic range of th...
متن کاملCytoarchitecture of the telencephalon in the coral reef multiband Butterflyfish ( Chaetodon multicinctus : Perciformes).
Detailed neuroanatomical studies of model species are necessary to facilitate comparative experiments which test hypotheses relevant to brain evolution and function. Butterflyfishes (Chaetodontidae) boast numerous sympatric species that differ in social behavior, aggression and feeding ecology. However, the ability to test hypotheses relevant to brain function in this family is hindered by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 218 Pt 10 شماره
صفحات -
تاریخ انتشار 2015